Uzi Pereg (Technion)Oct 10, 2-3pm, 212 Cory. Title and AbstractArbitrarily Varying Broadcast and Relay Channels In the second part of the talk, a new model is introduced, namely, the arbitrarily varying relay channel. The results include the cutset bound, decode-forward bound and partial decode-forward bound on the random code capacity, which require modification of the usual methods for the AVC to fit the block Markov coding scheme. The random code capacity is further determined for special cases. Then, deterministic coding schemes are considered, and the deterministic code capacity is derived under certain conditions, for the degraded and reversely degraded relay channel, and the case of orthogonal sender components. The following question is addressed: If the encoder-decoder and encoder-relay marginals are both symmetrizable, does that necessarily imply zero capacity? We show and explain why the answer is no. The random code capacity is determined for the arbitrarily varying Gaussian relay channel with sender frequency division, and the deterministic code capacity is bounded using the techniques of Csisz& This work is part of a Ph.D. thesis under the supervision of Yossef Steinberg. BioUzi Pereg is a Ph.D. student at the Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology. He received the B.Sc. (summa cum laude) degree in Electrical Engineering from Azrieli College of Engineering, Jerusalem, Israel, in 2011, and the M.Sc. degree from Technion, Haifa, Israel, in 2015. His research interests are in the areas of digital communications, information theory and coding theory. Uzi is a recipient of the Pearl Award for outstanding research work in the field of communications, the KLA-Tencor Award for an excellent conference paper, and the 2018 Viterbi Scholarship |